Extensions 1→N→G→Q→1 with N=C22×F5 and Q=S3

Direct product G=N×Q with N=C22×F5 and Q=S3
dρLabelID
C22×S3×F560C2^2xS3xF5480,1197

Semidirect products G=N:Q with N=C22×F5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×F5)⋊S3 = F5×S4φ: S3/C1S3 ⊆ Out C22×F52012+(C2^2xF5):S3480,1189
(C22×F5)⋊2S3 = C2×D6⋊F5φ: S3/C3C2 ⊆ Out C22×F5120(C2^2xF5):2S3480,1000
(C22×F5)⋊3S3 = F5×C3⋊D4φ: S3/C3C2 ⊆ Out C22×F5608(C2^2xF5):3S3480,1010

Non-split extensions G=N.Q with N=C22×F5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×F5).1S3 = D10.20D12φ: S3/C3C2 ⊆ Out C22×F5120(C2^2xF5).1S3480,243
(C22×F5).2S3 = C2×Dic3⋊F5φ: S3/C3C2 ⊆ Out C22×F5120(C2^2xF5).2S3480,1001
(C22×F5).3S3 = C2×Dic3×F5φ: trivial image120(C2^2xF5).3S3480,998

׿
×
𝔽